Construction of nearly conservative multivalue numerical methods for Hamiltonian problems

نویسندگان

  • Raffaele D’Ambrosio
  • Giuseppe De Martino
  • Beatrice Paternoster
  • Alessandro Iafrati
چکیده

The purpose of this paper is the derivation of multivalue numerical methods for Hamiltonian problems. It is known from the literature that such methods cannot be symplectic; however, they can satisfy an alternative property, known as G-symplecticity, which still allows a long time conservation of the Hamiltonian of the dynamical system under investigation. New G-symplectic methods are derived and compared with existing ones on a selection of Hamiltonian systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

The Control of Parasitism in G-symplectic Methods

G-symplectic general linear methods are designed to approximately preserve symplectic invariants for Hamiltonian systems. In this paper, the properties of G-symplectic methods are explored computationally and theoretically. Good preservation properties are observed over long times for many parameter ranges, but, for other parameter values, the parasitic behavior, to which multivalue methods are...

متن کامل

Numerical Integrators for Highly Oscillatory Hamiltonian Systems: A Review

Numerical methods for oscillatory, multi-scale Hamiltonian systems are reviewed. The construction principles are described, and the algorithmic and analytical distinction between problems with nearly constant high frequencies and with timeor state-dependent frequencies is emphasized. Trigonometric integrators for the first case and adiabatic integrators for the second case are discussed in more...

متن کامل

Line Integral Methods able to preserve all invariants of conservative problems

Recently, the class of Hamiltonian Boundary Value Methods (HBVMs) [1] has been introduced with the aim of preserving the energy associated with polynomial Hamiltonian systems (and, more in general, with all suitably regular Hamiltonian systems). However, many interesting problems admit other invariants besides the Hamiltonian function. It would be therefore useful to have methods able to preser...

متن کامل

Line integral methods which preserve all invariants of conservative problems

Recently, the class of Hamiltonian Boundary Value Methods (HBVMs) has been introduced with the aim of preserving the energy associated with polynomial Hamiltonian systems (and, more in general, with all suitably regular Hamiltonian systems). However, many interesting problems admit other invariants besides the Hamiltonian function. It would be therefore useful to have methods able to preserve a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013